Trinity Area School District Template for Curriculum Mapping

Course: Math Grade: 2 Designer(s): Math Comm	nittee		at students should understand and be able to do as subtraction, geometry, fractions, and measuremer	
Reason abstractly	and quan rguments matics. ools strate n.	(These "spiral" d persevere in solving them. titatively. s and critique the reasoning of others. egically.	uring Understandings, and Essential Questions throughout the entire curriculum.)	
Big Idea (A Big Idea is typically a noun and always transferable within and among content areas.)	(What Standa Blue P Standa	ard(s) Addressed Common Core Standard(s) and/or PA ard(s) addresses this Big Idea?) rint – Pennsylvania Common Core ards rint – National Common Core Standards	Enduring Understanding(s) (SAS refers to Enduring Understandings as "Big Ideas." EUs are the understandings we want students to carry with them after they graduate. EUs will link Big Ideas together. Consider having only one or two EUs per Big Idea.) Orange Print – Student Friendly Enduring Understanding Statements	Essential Question(s) (Essential Questions are broad and open ended. Sometimes, EQs can be debated. A student's answer to an EQ will help teachers determine if he/she truly understands. Consider having only one or two EQs per Enduring Understanding.)
Discovery	involv 2.0A.1 Repres and su *Use a solve o involv	2.A.1 Represent and solve problems ing addition and subtraction within 100. sent and solve problems involving addition btraction. ddition and subtraction within 100 to one- and two-step word problems ing situations of adding to, taking from, g together, taking apart, and comparing,	Addition and subtraction have an inverse relationship. The inverse relationship between addition and subtraction can be used to find subtraction facts; every subtraction fact has a related addition fact. *Discovery helps us to learn new ideas. * Every subtraction fact has a related addition fact.	How can you write related addition and subtraction facts? How can you use a picture to help you solve a problem?

Patterns	 with unknowns in all positions. Example – by using drawings and equations with a symbol for the unknown number to represent the problem CC2.2.2.A.2 Use mental strategies to add and subtract within 20. 2.0A.2 *Fluently add and subtract within 20 using mental strategies. By the end of grade 2, know from memory all sums of two one-digit numbers. 	Relationships can be described and generalizations made for mathematical situations that have numbers or objects that repeat in predictable ways. *When you are practicing your math facts you will notice patterns that will help you remember the sums.	What are the different ways to learn and remember facts?
Patterns	CC.2.2.2.A.3, 2.OA.3 Work with equal groups of objects to gain foundations for multiplication: *Determine whether a group of objects (up to 20) has an odd or even number of members. Example: By pairing objects or counting them by 2s; write an equation to express an even number as a sum of two equal addends.	Some numbers can be divided into two equal parts (even numbers) and some cannot (odd numbers). * When you are working with a group of objects sometimes you can separate those objects into two groups with the same amount of objects in each group. If you can do this the number of objects you used is an even number. Sometimes one of the two groups will have one more object than the other. This makes the number of objects you were working with an odd number.	How do you know if a number is even or odd?
Systems	 2.0A.4 Work with equal groups of objects to gain foundations for multiplication: *Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends. 	An array involves joining equal groups and is one way to think about multiplication. *Systems are made of smaller parts that make up the whole. * When you are working with even numbers of objects sometimes you can separate them into several groups of the same number of objects. Ex Twenty-five objects can be separated into 5 groups with 5 objects in each group.	How can an array be used to help write an equation that expresses the sum as the addition of the equal addends?
Base-Ten Numeration	CC2.1.2.B.1 Use place value concepts to represent amounts of tens and ones and to compare three digit numbers. 2.NBT.1 Number and Operations in Base Ten	Numbers can be used to tell how many. Our number system is based on groups of ten. Whenever we get 10 in one place value, we move to the next greater place value.	How can a number be shown using hundreds, tens, and ones place-value models?

	 Understand place value. *Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; Example: 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a. 100 can be thought of as a bundle of ten tens – called a "hundred." b. the numbers 100, 200, 300, 400, 500, 600, 700, 800, 900, refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 		
Representation	CC.2.1.2.B.2 Use place value concepts to read, write, and skip count to 1000. 2,NBT.2 Number and Operations in Base Ten *Count within 1000; skip-count by 5s, 10s, and 100s.	Numbers can be classified and represented in different ways. *When counting to 1000 you can count in different ways. You can skip count to 1000 by 5s, 10s, and 100s.	What visual patterns and number patterns can be made by skip counting? How can you use skip counting to find a total number of objects?
Representation	CC.2.1.2.B.3 Use place value understanding and properties of operations to add and subtract within 1000. 2.NBT.3 Number and Operations in Base Ten *Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.	Numbers can be written in different ways including using words and their expanded form.	How can you write numbers up to 1000 in different ways?
Symbols	2.NBT.4 Number and Operations in Base Ten *Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, < symbols to record the results of comparisons.	Place value can be used to compare and order numbers.	How does understanding place value help you compare three-digit numbers? How can you use symbols to compare the value of two three-digit numbers?
Strategies	CC.2.2.2.A.1 Operations and Algebraic Thinking Represent and solve problems involving addition and subtraction within 100. 2.NBT.5 Number and Operations in Base Ten Use place value understanding and properties of operations to add and subtract. *Fluently add and subtract within 100 using strategies based on place value, properties of	Doing mathematics involves a variety of processes including problem solving, reasoning, communicating, and representing.	How do you decide what strategies to use to solve addition and subtraction problems within 100?

	operations, and/or the relationship between addition and subtraction.		
Strategies	 2.NBT.6 Number and Operations in Base Ten Use place value understanding and properties of operations to add and subtract. * Add up to four two-digit numbers using strategies based on place value and properties of operations. 	Four numbers can be grouped and added in any order. You can use your knowledge of place value and properties of operations to solve such problems.	Can you add four numbers in any order?
Discovery	 2.NBT.7 Number and Operations in Base Ten Use place value understanding and properties of operations to add and subtract. *Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three- digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds. 	Concrete models can be used to demonstrate adding and subtracting numbers within 1000. When adding within 1000 sometimes one must compose (put together) or decompose (taken apart) tens and hundreds.	How can you use models to demonstrate adding and subtracting within 1000? How can you demonstrate the composition or decomposition of tens and hundreds when needed?
Connections	2.NBT.8 Number and Operations in Base Ten Use place value understanding and properties of operations to add and subtract. * Mentally add 10 or 100 to a given number 100- 900, and mentally subtract 10 or 100 from a given number 100-900.	Adding tens and hundreds is like adding ones.	When adding tens and hundreds how does the tens digit or hundreds digit change?
Properties	2.NBT.9 Number and Operations in Base Ten Use place value understanding and properties of operations to add and subtract. *Explain why addition and subtraction strategies work, using place value and the properties of operations.	The base-ten numeration system is a scheme for recording numbers using digits 0-9, groups of ten, and place value.	How can you use place value and the properties of operations to explain how to solve addition and subtraction problems? Why do the strategies work?
Length	CC.2.4.2.A.1 Measurement and Data Measure and estimate lengths in standard units using appropriate tools.	The length of some objects is measurable.	How can you measure the length of an object? What tools will you use to measure the length

Units of Measurement	 2. MD.1 Measurement and Data Measure and estimate lengths in standard units. * Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes. 2. MD.2 Measurement and Data 	The length of objects can be measured using	of various objects? How can you measure an object using
	* Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.	different units (smaller parts) of measurement.	different units of measurement? Show me how to measure an object using different tools.
Estimate	2. MD.3 Measurement and Data * Estimate lengths using units of inches, feet, centimeters, and meters.	The length of any object can be used as a measurement unit for length, but a standard unit is always the same length.	How can you estimate the length of an object in inches, feet, yards, centimeters, and meters? What does it mean to estimate?
Compare	 2. MD.4 Measurement and Data * Measure to determine how much longer one object is than another expressing the length difference in terms of a standard length unit. 	The length of one object can be compared to the length of another object.	How can you determine how much longer one object is than another?
Problem Solve	 CC.2.4.2.A.6 Extend the concepts of addition and subtraction to problems involving length. 2.MD.5 Measurement and Data Relate addition and subtraction to length. *Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units. Example – By using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem. 	Word problems can include lengths. You can add and subtract using units of measurement.	What can you use to help solve word problems involving length?
Diagram	 2 .MD.6 Measure and Data Relate addition and subtraction to length. * Represent whole-numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers 0, 1, 2,, and represent whole-number sums and differences within 100 on a number line 	Lengths, just like whole numbers, can be displayed on a number line. That number line can be used to find the sums and differences when adding and subtracting lengths.	How can you create a number line that displays lengths?

	diagram.		
Time	 CC2.4.2.A.2 Tell and write time to the nearest five minutes using both analog and digital clocks. 2. MD .7Measurement and Data Work with time and money. *Tell and write time from analog and digital clocks to the nearest five minutes, using a.m., and p.m. 	Time to the hour can be shown on an analog clock (clock with hands) or on a digital clock (clock with numbers) and can be written in different ways. Time can be written to the nearest five minutes using a.m. and p.m.	What are the different ways you can write and see times on clocks? How do you tell and write time to the nearest five minutes?
Money	CC.2.4.2.A.3 Solve problems using coins and paper currency with appropriate symbols. 2. MD.8 Measure and Data Work with time and money. * Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using \$ and cent symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?	Money amounts can usually be counted in different ways.	How can you find the value of a set of mixed coins? How can you find the value of a combination of a dollar bill and coins?
Representation	2. MD.9 Measure and Data Represent and Interpret data. * Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole-number units.	Graphs can be used to represent (show) and interpret (figure out) data.	How can you represent and interpret data using a line plot?
Representation	CC.2.4.2.A.4 Represent and interpret data using line plots, picture graphs, and bar graphs. 2. MD.10 Measure and Data Represent and interpret data. * Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.	Information can be displayed on different types of graphs to help you see and interpret (figure out) data.	How can you display data on a graph and use that graph to solve addition and subtraction problems? What types of graph can you create?
Explore	CC.2.3.2.A.1 Geometry - Analyze and draw two- and three- dimensional shapes having specified	Three-dimensional or solid figures have attributes and can be identified by those	Using the attributes, how can you create different shapes?

Discovery		attributes such as a gi given number of equa quadrilaterals, pentag 2. G .2Geometry * Partition a rectangle	nd their attributes. shapes having specified ven number of angles or a l faces. Identify triangles, ons, hexagons, and cubes. into rows and columns of l count to find the total	attributes. * Each solid figure looks figure out how they are the number of flat surfa they each have. Rectangles can be partit into smaller, equal piece	different by looking at ces, points, and sides cioned (split apart) off	How can you cut a rect equal pieces? Show m	
Equal Shares		fractions to partition s quarters, and thirds. 2. G.3 Geometry * Partition circles and or four equal shares d the words halves, thir and describe the whol	rectangles into two, three, escribe the shares using ds, half of, a third of, etc. e as two halves, three ecognize that equal shares		s of shapes can be	How can cutting larger smaller shapes?	• shapes make new
				andings, and Essential Qu out the entire curriculum, b			
Month of Instruction (In what month(s) will you teach this unit?)	Title of Unit	Big Idea(s) (A Big Idea is typically a noun and always transferable within and among content areas.)	Standard(s) Addressed (What Common Core Standard(s) and/or PA Standard(s) address this Big Idea?)	Enduring Understanding(s) (SAS refers to Enduring Understandings as "Big Ideas." EUs are the understandings we want students to carry with them after they graduate. EUs will link Big Ideas together.	Essential Question(s) (Essential Questions are broad and open ended. Sometimes, EQs can be debated. A student's answer to an EQ will help teachers determine if he/she truly understands.	Common Assessment(s)* (What assessments will all teachers of this unit use to determine if students have answered the Essential Questions?)	Common Resource(s)* Used (What resources will all teachers of this unit use to help students understand the Big Ideas?)

				Consider having only one or two EUs per Big Idea.)	Consider having only one or two EQs per Enduring Understanding.)		
August/Sep tember/Oct	Addition and Subtractio n Understan ding and Strategies	Discovery	CC.2.2.2.A.1 Represent and solve problems involving addition and subtraction within 100. 2.OA.1 Represent and solve problems involving addition and subtraction. *Use addition and subtraction within 100 to solve one- and two- step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions. Example – by using drawings and equations with a symbol for the unknown number to represent the problem	Addition and subtraction have an inverse relationship. The inverse relationship between addition and subtraction can be used to find subtraction facts; every subtraction fact has a related addition fact. *Discovery helps us to learn new ideas. * Every subtraction fact has a related addition fact.	How can you write related addition and subtraction facts? How can you use a picture to help you solve a problem?		Topics 1, 2, 3 (Not exclusively and not all lessons need to be used) Technology (ex. Hooda Math)
Oct	Working with Equal Groups	Patterns Systems	CC.2.2.2.A.3, 2.OA.3 Work with equal groups of objects to gain foundations for multiplication:	Some numbers can be divided into two equal parts (even numbers) and some cannot (odd numbers).	How do you know if a number is even or odd? How can an array be used to help write an	Quarterly Test After Topic 4	Topic 4 (Not exclusively and not all lessons need to be used) Technology (ex.

			*Determine whether a group of objects (up to 20) has an odd or even number of members. Example: By pairing objects or counting them by 2s; write an equation to express an even number as a sum of two equal addends. 2.OA.4 Work with equal groups of objects to gain foundations for multiplication: *Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.	* When you are working with a group of objects sometimes you can separate those objects into two groups with the same amount of objects in each group. If you can do this the number of objects you used is an even number. Sometimes one of the two groups will have one more object than the other. This makes the number of objects you were working with an odd number. An array involves joining equal groups and is one way to think about multiplication. *Systems are made of smaller parts that make up the whole. * When you are working with even numbers of objects sometimes you	equation that expresses the sum as the addition of the equal addends?	Hooda Math)
			arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal	An array involves joining equal groups and is one way to think about multiplication. *Systems are made of smaller parts that make up the whole. * When you are working with even numbers of		
				can separate them into several groups of the same number of objects. Ex Twenty-five objects can be separated into 5 groups with 5 objects in each group.		
Oct/Nov/D ec	Place Value to	Represent	CC.2.1.2.B.2 Use place value concepts to read,	Numbers can be used to tell how many. Our	How can a number be shown using	Topic 5, Topic 10(Not exclusively

100	Numeration	write, and skip count to	number system is based	hundreds, tens, and	and not all lessons
		1000.	on groups of ten.	ones place-value	need to be used)
	Symbols	2.NBT.2 Number and	Whenever we get 10 in	models?	Technology (ex.
	0,111,0010	Operations in Base Ten	one place value, we		Hooda Math)
		*Count within 1000;	move to the next greater	What visual patterns	
		skip-count by 5s, 10s,	place value.	and number patterns	
		and 100s.	Numbers can be	can be made by skip	
		CC.2.1.2.B.3 Use place	classified and	counting? How can	
		value understanding	represented in different	you use skip counting	
		and properties of	ways.	to find a total number	
		operations to add and	*When counting to 1000	of objects?	
		subtract within 1000.	you can count in		
		2.NBT.3 Number and	different ways. You can	How can you write	
		Operations in Base Ten	skip count to 1000 by	numbers up to 1000	
		*Read and write	5s, 10s, and 100s.	in different ways?	
		numbers to 1000 using	Numbers can be written		
		base-ten numerals,	in different ways	How can a number be	
		number names, and	including using words	shown using	
		expanded form.	and their expanded	hundreds, tens, and	
			form.	ones place-value	
		CC2.1.2.B.1 Use place		models?	
		value concepts to	Numbers can be used to		
		represent amounts of	tell how many. Our	How does	
		tens and ones and to	number system is based	understanding place	
		compare three digit	on groups of ten.	value help you	
		numbers.	Whenever we get 10 in	compare three-digit	
		2.NBT.1 Number and	one place value, we	numbers? How can	
		Operations in Base Ten	move to the next greater	you use symbols to	
		Understand place	place value.	compare the value of	
		value.	1	two three-digit	
		*Understand that the	Place value can be used	numbers?	
		three digits of a three-	to compare and order		
		digit number represent	numbers.		
		amounts of hundreds,			
		tens, and ones;			
		Example: 706 equal 7			
I		Liampie. 700 equal 7			1

-	1						1
			hundreds, 0 tens, and 6				
			ones. Understand the				
			following as special				
			cases:				
			a. 100 can be thought of				
			as a bundle of ten tens				
			– called a "hundred."				
			b. the numbers 100,				
			200, 300, 400, 500,				
			600, 700, 800, 900,				
			refer to one, two, three,				
			four, five, six, seven,				
			eight, or nine hundreds				
			(and 0 tens and 0				
			ones).				
			2.NBT.4 Number and				
			Operations in Base Ten				
			*Compare two three-				
			digit numbers based on				
			meanings of the				
			hundreds, tens, and				
			ones digits, using >, =, <				
			symbols to record the				
			results of comparisons.				
Nov/Jan	Mental	Strategies	CC.2.2.2.A.1 Operations	Doing mathematics	How do you decide	Quarterly Test	Topics 6, 7, 8, and 9.
	Addition		and Algebraic Thinking	involves a variety of	what strategies to use	After Topic 8	(Not exclusively
	and	Connections	Represent and solve	processes including	to solve addition and		and not all lessons
	Subtractio		problems involving	problem solving,	subtraction problems		need to be used)
	n and	Properties	addition and	reasoning,	within 100?		Technology (ex.
	Adding		subtraction within 100.	communicating, and	Can you add four		Hooda Math
	and		2.NBT.5 Number and	representing.	numbers in any order?		
	Subtractin		Operations in Base Ten				
	g Two-		Use place value	Four numbers can be			
	Digit		understanding and	grouped and added in	How can you use		
	numbers		properties of	any order. You can use	models to		
			operations to add and	your knowledge of place	demonstrate adding		

	· · · · · ·		
subtract.	value and properties of	and subtracting within	
*Fluently add and	operations to solve such	1000? How can you	
subtract within 100	problems.	demonstrate the	
using strategies based		composition or	
on place value,		decomposition of tens	
properties of	Concrete models can be	and hundreds when	
operations, and/or the	used to demonstrate	needed?	
relationship between	adding and subtracting		
addition and	numbers within 1000.	When adding tens and	
subtraction.	When adding within	hundreds how does	
2.NBT.6 Number and	1000 sometimes one	the tens digit or	
Operations in Base Ten	must compose (put	hundreds digit	
Use place value	together) or decompose	change?	
understanding and	(taken apart) tens and	5-	
properties of	hundreds.	How can you use place	
operations to add and	inumui ouoi	value and the	
subtract.	Adding tens and	properties of	
* Add up to four two-	hundreds is like adding	operations to explain	
digit numbers using	ones.	how to solve addition	
strategies b2.NBT.7	ones.	and subtraction	
Number and	The base-ten	problems? Why do	
Operations in Base Ten	numeration system is a	the strategies work?	
Use place value	scheme for recording	the strategies work:	
understanding and	numbers using digits 0-		
properties of	9, groups of ten, and		
operations to add and subtract.	place value.		
*Add and subtract			
within 1000, using			
concrete models or			
drawings and			
strategies based on			
place value, properties			
of operations, and/or			
the relationship			
between addition and			

	otraction; relate the		
	ategy to a written		
	thod. Understand		
tha	t in adding or		
sub	otracting three-digit		
	nbers, one adds or		
	otracts hundreds and		
hur	ndreds, tens and		
	s, ones and ones;		
	l sometimes it is		
	cessary to compose		
	decompose tens and		
	s or hundreds.		
ten	s of fundreus.		
2.1	BT.8 Number and		
	erations in Base Ten		
	e place value		
	derstanding and		
	operties of		
ope	erations to add and		
	otract.		
	entally add 10 or		
) to a given number		
)-900, and mentally		
	otract 10 or 100		
from	m a given number		
100)-900.		
2.N	BT.9 Number and		
Ope	erations in Base Ten		
	e place value		
und	derstanding and		
pro	operties of		
pro	P		

			operations to add and subtract. *Explain why addition and subtraction strategies work, using place value and the properties of operations.				
Feb	Geometry	Explore, Discovery, Equal Shares	CC.2.3.2.A.1 Geometry - Analyze and draw two- and three- dimensional shapes having specified attributes. 2. G .1Geometry Reason with shapes and their attributes. * Recognize and draw shapes having specified attributes such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes. 2. G .2Geometry * Partition a rectangle into rows and columns of same-size squares and count to find the total number of them. CC.2.3.2.A.2 Geometry Use the understanding of fractions to partition	Three-dimensional or solid figures have attributes and can be identified by those attributes. * Each solid figure looks different. You can figure out how they are different by looking at the number of flat surfaces, points, and sides they each have. Rectangles can be partitioned (split apart) off into smaller, equal pieces. Some shapes can be decomposed (broken up) into other shapes. Parts of shapes can be called by different names.	Using the attributes, how can you create different shapes? Rectangles can be partitioned (split apart) off into smaller, equal pieces. Some shapes can be decomposed (broken up) into other shapes. Parts of shapes can be called by different names.	Quarterly Test After Topic 12	Topic 12 (Not exclusively and not all lessons need to be used) Technology (ex. Hooda Math

March/Apri l	Money - Finding the value of	Money Time	shapes into halves, quarters, and thirds. 2. G.3 Geometry * Partition circles and rectangles into two, three, or four equal shares describe the shares using the words halves, thirds, half of, a third of, etc. and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape. CC.2.4.2.A.3 Solve problems using coins and paper currency	Money amounts can usually be counted in different ways.	How can you find the value of a set of mixed coins?	Topic Tests	Topics 13 & 14 (Not exclusively and not all lessons
	mixed		with appropriate		How can you find the		need to be used)
	coins and a dollar bill	Units of Measurement	symbols. 2. MD.8 Measure and		value of a combination of a dollar bill and		Technology (ex. Hooda Math
	with mixed	measurement	Data		coins?		
	coins	Estimate	Work with time and		00000		
			money.				
		Compare	* Solve word problems				
			involving dollar bills,				
		Problem Solve	quarters, dimes, nickels, and pennies,				
			using \$ and cent				
			symbols appropriately.				
			symbols appropriately. Example: If you have 2				

			have?			
May	Measuring	Units of	CC.2.4.2.A.1	The length of some	How can you measure	Topic 15
	Length	Measurement	Measurement and Data	objects is measurable.	the length of an	(Not exclusively
			Measure and estimate	The length of objects can	object?	and not all lessons
		Estimate	lengths in standard	be measured using		need to be used)
			units using appropriate	different units (smaller	What tools will you	Technology (ex.
		Compare	tools.	parts) of measurement.	use to measure the	Hooda Math
			2. MD.1 Measurement	The length of any object	length of various	
		Problem Solve	and Data	can be used as a	objects?	
			Measure and estimate	measurement unit for	_	
			lengths in standard	length, but a standard		
			units.	unit is always the same	How can you measure	
			* Measure the length of	length.	an object using	
			an object by selecting	_	different units of	
			and using appropriate	The length of any object	measurement?	
			tools such as rulers,	can be used as a	Show me how to	
			yardsticks, meter	measurement unit for	measure an object	
			sticks, and measuring	length, but a standard	using different tools.	
			tapes.	unit is always the same	_	
			. MD.2 Measurement	length	How can you estimate	
			and Data		the length of an object	
			* Measure the length of	The length of one object	in inches, feet, yards,	
			an object twice, using	can be compared to the	centimeters, and	
			length units of different	length of another object.	meters?	
			lengths for the two	Word problems can	What does it mean to	
			measurements;	include lengths. You can	estimate?	
			describe how the two	add and subtract using		
			measurements relate to	units of measurement.		
			the size of the unit	Lengths, just like whole	How can you	
			chosen	numbers, can be	determine how much	
			2. MD.3 Measurement	displayed on a number	longer one object is	
			and Data	line. That number line	than another?	
			* Estimate lengths	can be used to find the		
			using units of inches,	sums and differences	What can you use to	
			feet, centimeters, and	when adding and	help solve word	
			meters.	subtracting lengths.	problems involving	

		1 10	[
		length?	
2. MD.4 Measurement			
and Data	Word problems can		
* Measure to determine	include lengths. You can	How can you create a	
how much longer one	add and subtract using	number line that	
object is than another	units of measurement	displays lengths?	
expressing the length			
difference in terms of a	Lengths, just like whole		
standard length unit.	numbers, can be		
CC.2.4.2.A.6 Extend the	displayed on a number		
concepts of addition	line. That number line		
and subtraction to	can be used to find the		
problems involving	sums and differences		
length.	when adding and		
2 .MD.5 Measurement	subtracting lengths.		
and Data			
Relate addition and			
subtraction to length.			
*Use addition and			
subtraction within 100			
to solve word problems			
involving lengths that			
are given in the same			
units.			
Example – By using			
drawings (such as			
drawings of rulers) and			
equations with a			
symbol for the			
unknown number to			
represent the problem			
2 .MD.6 Measure and			
Data			
Relate addition and			
subtraction to length.			
* Represent whole-			
Represent whole-			

Aug May	Fluently add and subtract within 20	Retain	numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers 0, 1, 2,, and represent whole- number sums and differences within 100 on a number line diagram. CC2.2.2.A.2 Use mental strategies to add and subtract within 20. 2.0A.2 *Fluently add and	Relationships can be described and generalizations made for mathematical situations that have numbers or	What are the different ways to learn and remember facts?	Timed Tests	Topic 1 resources Technology (ex. Hooda Math) Fact Family Triangles
			*Fluently add and subtract within 20 using mental strategies. By the end of grade 2, know from memory all sums of two one-digit numbers.	that have numbers or objects that repeat in predictable ways. *When you are practicing your math facts you will notice patterns that will help you remember the sums.			Triangles
Мау	Time, Graphs, and Data	Representation Diagram	CC2.4.2.A.2 Tell and write time to the nearest five minutes using both analog and digital clocks. 2. MD .7Measurement and Data Work with time and money. *Tell and write time from analog and digital clocks to the nearest five minutes, using a.m.,	Time to the hour can be shown on an analog clock (clock with hands) or on a digital clock (clock with numbers) and can be written in different ways. Time can be written to the nearest five minutes	What are the different ways you can write and see times on clocks? How do you tell and write time to the nearest five minutes?		Topic 16 (Not exclusively and not all lessons need to be used) Technology (ex. Hooda Math

1	. 1		1
and p.m. 2. MD.9 Measure and	using a.m. and p.m.		
		How can you	
Data		represent and	
Represent and		interpret data using a	
Interpret data.		line plot?	
* Generate		How can you display	
measurement data by		data on a graph and	
measuring lengths of		use that graph to solve	
several objects to the	Graphs can be used to	addition and	
nearest whole unit, or	represent (show) and	subtraction problems?	
by making repeated	interpret (figure out)	What types of graph	
measurements of the	data.	can you create?	
same object. Show the	Information can be	-	
measurements by	displayed on different		
making a line plot,	types of graphs to help		
where the horizontal	you see and interpret		
scale is marked off in	(figure out) data.		
whole-number units	(ingui o o uo) uu uu		
CC.2.4.2.A.4 Represent			
and interpret data			
using line plots, picture			
graphs, and bar graphs.			
2. MD.10 Measure and			
Data			
Represent and			
interpret data.			
* Draw a picture graph			
and a bar graph (with			
single-unit scale) to			
represent a data set			
with up to four			
categories. Solve			
simple put-together,			
take-apart, and			
compare problems			

				using information presented in a bar graph.				
--	--	--	--	---	--	--	--	--

* Some teachers may need to think about the assessments and resources used in order to determine the Big Ideas, Enduring Understandings, and Essential Questions embedded in their courses. At this point in your curriculum mapping, you might want to ignore the "Common Assessments" and "Common Resources Used" columns. However, you may use them if you wish.